上公告試題僅供參考

注意:考試開始鈴(鐘)響前,不可以翻閱試題本

106 學年度科技校院四年制與專科學校二年制統 一 入 學 測 驗 試 題 本

電機與電子群電機類

專業科目(二):電工機械、電子學實習、 基本電學實習

【注 意 事 項】

- 1.請核對考試科目與報考群(類)別是否相符。
- 2.請檢查答案卡(卷)、座位及准考證三者之號碼是否完全相同,如有不符,請監試人員查明處理。
- 3.本試卷分三部份,共50題,共100分,答對給分,答錯不倒扣。試卷 最後一題後面有備註【以下空白】。
 - 第一部份(第1至20題,每題2分,共40分)
 - 第二部份(第21至35題,每題2分,共30分)
 - 第三部份(第36至50題,每題2分,共30分)
- 4.本試卷均為單一選擇題,每題都有 (A)、(B)、(C)、(D) 四個選項,請選一個最適當答案,在答案卡同一題號對應方格內,用 2B 鉛筆塗滿方格,但不超出格外。
- 5.有關數值計算的題目,以最接近的答案為準。
- 6.本試卷空白處或背面,可做草稿使用。
- 7.請在試卷首頁准考證號碼之方格內,填上自己的准考證號碼,考完後 將「答案卡(卷)」及「試題」一併繳回。

准考證號碼		
考試開始鈴(鐘)響時,請先	填寫准考證號碼,再翻閱試題本作答。	0

公告試題僅供參考 106 年四技 專業科目(二)

第一部份:電工機械(第1至20題,每題2分,共40分)

輸出電壓仍維持200V,則一次側輸入電壓應為何?

(B) 550 V

1.	以 10 A 電流激磁,和 約為何?	在鐵心未飽和情況下可使	該磁路產生10韋伯的研	心上繞一50匝的線圈並 滋通量,則磁路平均長度		
	$(A) 0.5 \mathrm{m}$	(B) 0.4m	(C) 0.3 m	(D) $0.2 \mathrm{m}$		
2.	極掌(pole shoe)為	平面,且每匝可感應出	E 伏特的電動勢,當緣	轉,若電機的主磁極之 組兩端之感應電動勢為 可向間之可能夾角為何? (D) 90°		
3.	(A) 磁化曲線描述滿 (B) 外部特性曲線描 (C) 內部特性曲線描	幾之特性曲線的敘述,作 載時電樞電流和電樞感 述輸出端電壓和負載電 述激磁電流和電樞感應 述負載電流和電樞電流	應電動勢間之關係 流間之關係 電動勢間之關係			
4.	直流發電機,接上負 之總去磁安匝數約為	負載後所產生的電樞反 為何?	應使磁中性面向前移1	r(duplex)後退式波繞之 8°機械角,則電樞反應		
	(A) 1200安匝	(B) 1600安匝	(C) 2000安匝	(D) 2400安匝		
5.				· ? 堯		
6.	負載分擔不均而燒緊 的串激場繞組電阻分		, 200 V,兩機電樞電阻 ,若分激場繞組電阻和	載,並加均壓線以避免 皆為 0.1Ω ,而 $G1$ 及 $G2$ 均壓線電阻忽略不計, (D) 12.5 A		
				` '		
7.	. 一部 $120\mathrm{V}$ 分激式直流電動機,電樞電阻為 0.2Ω ,額定電樞電流和轉速分別為 $25\mathrm{A}$ $1200\mathrm{rpm}$,若要維持輸出馬力不變,利用磁場控速法將轉速提升為 $1500\mathrm{rpm}$,則磁通如何調變?					
	(A) 約增加10%	(B)約減少20%	(C)約增加18%	(D) 約減少10%		
8.	電樞電流和轉速分別	刊為 50 A 和 1000 rpm, 專速之 0.8 倍,則應如何 阻於電樞繞組迴路 阻於電樞繞組迴路 阻於電樞繞組迴路	若要維持輸出轉矩不變	為 0.2 Ω 和 0.1 Ω,滿載 達,利用電樞電阻控速法		
9.	, ,		匝數增加20%,且此修	多改後的變壓器之二次側		

(C)700V

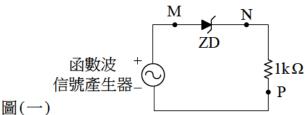
(D) 750 V

(A) 500 V

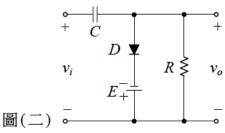
106 年四技

第3頁 共8頁

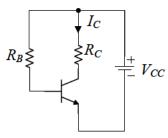
10.		當供給80%負載且功率		
11.	若三相感應電動機發(A)產生最大轉矩(C)轉子導體感應最力	生轉子轉速等於同步遊 大電動勢	逐率時,則下列敘述何 (B) 轉子導體產生最之 (D) 轉子導體無法感	大電流
12.	1140 rpm,若轉子繞轉子繞組的電流頻率	組每相外加 6Ω 電阻 為何?	,則在相同電源電壓	l電阻為2Ω,滿載轉速為 及相同滿載轉矩下,其
	(A) 0.2 Hz	(B) 1.2 Hz	(C) 6Hz	(D) 12 Hz
13.	在額定電壓與額定頻之大小關係為何? (A) $I_{SN} < I_{SF}$ (C) $I_{SN} > I_{SF}$	率供電下,三相 <u>感</u> 應電	動機之無載起動電流(<i>I</i> , (B) <i>I_{SN} = I_{SF}</i> (D) 不一定	$_{SN})$ 與滿載起動電流 (I_{SF})
14.		725 rpm 的單相感應電 差率分別為 s_1 及 s_2 ,貝 (B) 0.5		專向旋轉磁場的轉差率及 (D) 2
15.		輸出功率為2kW,由韓		, 协機帶動,若損失不計,
16.	交流同步發電機之無(A)外部特性曲線(C)開路特性曲線	載試驗是為了測量:	(B) 短路特性曲線 (D) 絕緣電阻	
17.	某同步發電機供給落如何調整激磁電流? (A) 調整激磁電流為 (C) 增加激磁電流		載增加時,若要維持 (B) 減少激磁電流 (D) 激磁電流維持不勢	負載端電壓不變,則應
18.	當三相同步電動機的 (A)增加	激磁電流增加後,對穩 (B) 減少	態轉速之影響為何? (C) 不變	(D) 先增加後減少
19.	關於同步電動機轉子 (A) 過激磁	繞組的激磁,下列何者 (B) 正常激磁	音會讓同步電動機呈現 (C) 欠激磁	
20.	下列關於直流無刷電(A)利用電晶體作繞約(B)可以避免發生換的(C)轉子以永久磁鐵机(D)常用電阻元件感激	可火花的問題 構成	<u> </u>	


公告試題僅供參表 106 年四技 事業科目(二)

第二部份:電子學實習(第21至35題,每題2分,共30分)

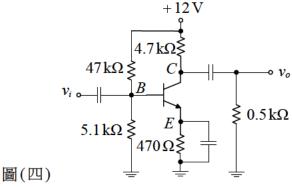

- 21. "叫叫CABD"為心肺復甦術(CPR)的急救步驟,下列何者代表字母A的意義?
 - (A) 使用體外去顫器AED電擊
- (B)胸部按壓

(C) 進行人工呼吸


- (D) 暢通呼吸道
- 22. 如圖(一)所示之電路,其中函數波信號產生器提供峰值10V且頻率為100Hz之正弦波電壓,以一般示波器及一般非差動式探棒量測稽納二極體ZD(稽納電壓為5V)之V-I特性曲線,若已知示波器頻道CH1探棒正端鈎M點及負端夾N點,則下列有關示波器之操作,何者錯誤?
 - (A) 頻道CH2探棒正端鈎N點及負端夾P點
 - (B) 示波器設定在X-Y模式下進行觀測
 - (C) 頻道 CH2 應設定為反相(INV) 顯示
 - (D) CH 1 及 CH 2 兩頻道均以 DC 耦合模式 進行觀測

- 23. 如圖 (二)所示之電路,已知輸入電壓 v_i 是週期為T秒的 \pm 10 V 方波,D 為理想二極體,電容 C 之初始電壓為零,E 為 2 V 之直流電源,假設 RC 時間常數遠大於 T 使得輸出電壓不會產生失真,則輸出電壓 v_o 之平均值約為何?
 - (A) 20 V
 - (B) 8 V
 - (C) 12V
 - (D) 16V

- 24. 某BJT 電晶體之最大集極功率損耗 $P_{C(max)}$ 為 400 mW,最大集極電壓 BV_{CEO} 為 80 V,最大集極電流 $I_{C(max)}$ 為 100 mA,則下列選項何者不在此電晶體之安全工作區?
 - (A) $V_{CE} = 15 \text{ V}$, $I_C = 10 \text{ mA}$
 - (B) $V_{CE} = 25 \text{ V}$, $I_C = 20 \text{ mA}$
 - (C) $V_{CE} = 40 \text{ V}$, $I_C = 8 \text{ mA}$
 - (D) $V_{CE} = 8 \text{ V}$, $I_C = 35 \text{ mA}$
- 25. 如圖 (Ξ) 所示之電路,若電晶體保持在主動區工作,當提高 R_C 值而 V_{CC} 及 R_B 值保持不變,則下列敘述何者正確?
 - (A) 工作點不變
 - (B) 工作點朝飽和區反方向移動
 - (C) 基極電流增加
 - (D) 工作點朝飽和區方向移動

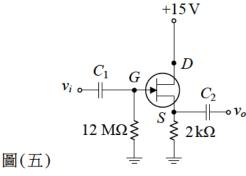


26. 下列有關 BJT 共射極 (CE)、共集極 (CC)、共基極 (CB) 組態放大器電路之敘述,何者錯誤?

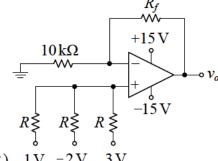
圖(三)

- (A) CE 放大器之輸出電壓與輸入電壓相位相差 180°
- (B) CB 放大器之電流增益非常高
- (C) CC 放大器常當作阻抗匹配用途
- (D) CC 放大器之輸入阻抗高

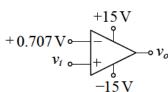
- 27. 如圖 (四)所示之 BJT 電晶體放大器電路,假設 BJT 之 $V_{BE(on)}=0.6\,\mathrm{V}$ 、 $\beta=200$ 、熱電壓 $V_T=26\,\mathrm{mV}$,放大器不會有失真且輸入電壓 $v_i=50\sin(2000\pi t)\,\mathrm{mV}$,則輸出電壓 v_o 約為何?
 - (A) $3.71\sin(2000\pi t + 180^{\circ})$ V
 - (B) $-4.56\sin(2000\pi t)$ V
 - (C) $1.01\sin(2000\pi t + 180^{\circ})$ V
 - (D) $-5.88\sin(2000\pi t)$ V



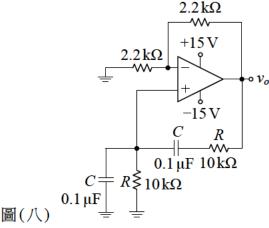
- 28. 下列有關達靈頓(Darlington)放大電路特性之敘述,何者正確?
 - (A) 電壓增益極高

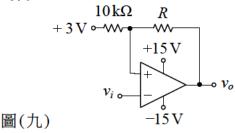

(B) 電流增益小於1

(C)輸入阻抗高

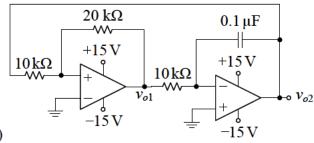

- (D) 溫度特性穩定
- 29. 有一N通道JFET 其截止電壓 $V_{GS(off)}=-4$ V,當工作於飽和區且閘-源極間電壓 $V_{GS}=-2$ V 時,量測得汲極電流為 2 mA;若 $V_{GS}=-1.17$ V 時,其汲極電流約為何?
 - (A) 6mA
- (B) 4 mA
- (C) 2 mA
- (D) 1 mA
- 30. 如圖(五)所示之電路,JFET之 $I_{DSS}=4$ mA,截止電壓 $V_{GS(\mathit{off})}=-4$ V,則電壓增益 $\frac{v_o}{v_i}$ 約為何?
 - (A) 0.91
 - (B) 0.82
 - (C) 0.74
 - (D) 0.67

- 31. 如圖(六)所示之理想運算放大器電路, $R=20\,\mathrm{k}\Omega$,若 $v_o=2\,\mathrm{V}$,則 R_f 值應為何?
 - (A) $20 k\Omega$
 - (B) $30 \text{ k}\Omega$
 - (C) 40 k Ω
 - (D) $50 k\Omega$


- 圖(六) 1V -2V 3V
- 32. 如圖(t)所示之電路,若 $v_i = \sin(2\pi t)$ V,則 v_o 波形每週期之正電壓時間與負電壓時間 之比為何?
 - (A) 1 : 1
 - (B) 1:2
 - (C) 1 : 3
 - (D) 1:4


圖(七)

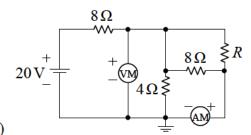
公告試題僅供參表 106年四技 中華 106年回技 中華 106年回共 106年回共


- 33. 下列有關圖(八)所示電路之敘述,何者正確?
 - (A) 兩電容C值增加,則v。之頻率亦增加
 - (B) 兩電阻 R值增加,則 v_o 之頻率亦增加
 - (C) 穩態時 v。 為週期 2π 秒之弦波
 - (D) 電路不會產生振盪

- 34. 如圖(九)所示之施密特觸發器電路,運算放大器之輸出正、負飽和電壓分別為+15V和-15V,若其遲滯電壓為5V,則電阻R值應為何?
 - (A) $5 k\Omega$
 - (B) 50 k Ω
 - (C) $100 \text{ k}\Omega$
 - (D) $500 \text{ k}\Omega$

- 35. 下列有關圖(十)所示理想運算放大器電路之敘述,何者正確?
 - (A) v_{o2} 為峰值 \pm 7.5 V 之三角波
 - (B) v_o 為頻率 500 Hz 之方波
 - (C) 電壓增益 $\frac{v_{o1}}{v_{o2}} = 3$
 - (D) val 波形之週期為500 ms

圖(十)

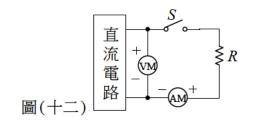

第三部份:基本電學實習(第36至50題,每題2分,共30分)

- 36. 某一車用頭燈其規格標示為 12 V、55 W,當頭燈點亮時用三用電錶量測其兩端直流電壓為 11.8 V,則量測該頭燈之電流合理值約為何?
 - (A) 1.3 A
- (B) 2.6 A
- (C) 3.3 A
- (D) 4.5 A
- 37. 下列何者無法使用一般三用電錶直接量測讀取數值?
 - (A) 量測碳膜電阻之電阻值

(B) 量測電線是否斷路

(C) 量測家用插座電壓

- (D) 量測 LED 之消耗功率
- 38. 如圖(十一)所示之電路,其中內為理想直流電壓表,內為理想直流電流表,若內讀值為 1A,則下列敘述何者正確?
 - $(A) R=8\Omega$,電壓表讀值為8V
 - $(B) R=8\Omega$,電壓表讀值為4V
 - (C) $R=4\Omega$,電壓表讀值為8V
 - $(D) R=4\Omega$, 電壓表讀值為4V



圖(十一)

第7頁 共8頁

- 39. 如圖(+-)所示之電路,當開關S閉合時電流表 ω 讀值為4A,當開關S打開時電壓表 ω 讀值為12V,若 $R=2\Omega$,則下列敘述何者正確?
 - (A) 開關S閉合時電壓表讀值為8V
 - (B) 開關 S閉合時電壓表讀值為 12 V
 - (C) 直流電路之戴維寧等效電阻為2Ω
 - (D) 直流電路之戴維寧等效電阻為4Ω

- 40. 下列有關相同材料之導線的敘述,何者錯誤?
 - (A) 線徑越大其集膚效應越小
 - (B) 使用絞線的原因之一是要降低集膚效應
 - (C) 線徑越大時其造成之電壓降越小
 - (D) 線徑越大時其安全電流越大
- 41. 下列關於單相三線110V/220V供電系統之敘述,何者錯誤?
 - (A) 總開關可設置三個一極(1P)之無熔絲斷路器(NFB)分別控制兩條火線及中性線
 - (B) 由 NFB 控制的兩條火線線徑應相同
 - (C) 總開關可設置一個雙極(2P)之NFB控制兩條火線,中性線不需接總開關
 - (D) 兩條火線間之額定電壓為220 V
- 42. 使用具有E極、P極與C極之一般型接地電阻計量測接地電阻時,下列敘述何者正確?
 - (A) C 極為輔助電位電極
 - (B) P極為輔助電流電極
 - (C) E極為待測接地極
 - (D) 量測時接地電阻計需接E極與P極,C極不必接
- 43. 在示波器的操作實驗中,以示波器來觀測 10 kHz 之正弦波訊號,若水平軸刻度設定為 0.01 ms / DIV 且使用 10: 1 之電壓探棒,則所看到的一個完整週期之正弦波訊號應剛好 佔滿水平軸幾格(DIV)?
 - (A) 1

(B) 2

- (C) 10
- (D) 20
- 44. 在RC串聯電路中,有關時間常數 (τ) 之敘述,下列何者正確?
 - (A) $\tau = R/C$

(B) $\tau = C/R$

(C) T與R值成正比

- (D) τ 與C值成反比
- 45. 有關 RLC 並聯諧振電路之實驗與特性分析,下列敘述何者正確?
 - (A) 電路之諧振頻率與電阻值大小成正比
 - (B) 電源頻率小於諧振頻率時電路呈電感性
 - (C) 電路在發生諧振時電路阻抗最小
 - (D) 電路在發生諧振時流經電感器之電流為零
- 46. RLC串聯諧振電路之品質因數 O值,與下列何者有關?
 - (A) 電路之電壓相角值及電流大小值
 - (B) 電路之諧振頻率及頻寬
 - (C) 電路之電壓相角值及電流相角值
 - (D) 電路之電壓大小值及電流相角值

公告試題僅供參表 106年四技 106年四技 專業科目(二)

- 47. 下列有關交流電路中電功率之敘述,何者錯誤?
 - (A) 視在功率為電流有效值平方與電壓有效值之乘積
 - (B) 視在功率的單位為伏安(VA)
 - (C) 實功率不變下, 虚功率增加視在功率也會增加
 - (D) 虚功率的單位為乏(VAR)
- 48. 交流 RL 串聯電路中,已知電阻 $R=6\Omega$,電感 L 之值未知,當接上電壓為 220 V 頻率為 60 Hz 之交流弦波電源時,功率因數為 0.8,若改接電壓為 110 V 頻率為 60 Hz 之交流弦波電源時,其功率因數為何?

(A) 0.9

(B) 0.8

(C) 0.6

(D) 0.5

- 49. 下列有關日光燈的起動器之敘述,何者錯誤?
 - (A) 常用之規格有1P及4P之分
- (B) 1P之起動器適用於10W之燈管

(C) 起動器內裝有一電容器

- (D) 起動器內裝有一穩流電感器
- 50. 下列有關三相感應電動機 Y △起動控制之敘述,何者<u>錯誤</u>?
 - (A) Y-△起動時繞組電流為全壓起動繞組電流的1/3倍
 - (B) Y-△起動是三相感應電動機降壓起動方法之一
 - (C) Y-∆起動電流小於全壓起動電流
 - (D) Y-△起動轉矩為全壓起動轉矩之1/3倍

【以下空白】